
Configuration management

A call for design patterns

maurice@atcomputing.nl

Training

Consultancy

& Remote support

● Celebrating 30 years !
● One of NLUUG founders

maurice@atcomputing.nl

ing. Maurice Verheesen Msc.

● Technical account manager AT Computing
● Country & dutch team coordinator of the FSFE
● Electro engineer & Innovation Management
● Hobby == work

maurice@atcomputing.nl

Contents

● Terms
● Tools
● Comparison of config-management tools
● Challenges
● Proposal : Design Patterns for CM

maurice@atcomputing.nl

Policies

Principles

Services

Standards & Guidelines

Products

Management
speak

maurice@atcomputing.nl

Policies

Principles

Services

Standards & Guidelines

Products

Server

Client

Middleware

“Application systems maximize
the effectiveness of the user.”

maurice@atcomputing.nl

Policies

Principles

Services

Standards & Guidelines

Products

Server

Client

Middleware

Config-management
MIL HDBK-61
ANSI EIA-649
ITIL & ISO 20000

maurice@atcomputing.nl

Why are we doing this?

maurice@atcomputing.nl

maurice@atcomputing.nl

maurice@atcomputing.nl

Design

Build

Run

Monitor

Operations
as a process

CM
Provisioning
Orchestration

maurice@atcomputing.nl

Tools

CFEngine
New
century Puppet Chef Ansible

1993 2000 2005 2009 2012

maurice@atcomputing.nl

CFEngine

● Truly CM, the one that started it all
● Since v3 different DSL
● “... to define desired states of the IT infrastructure”
● “Lightweight agents continuously ensures that the

actual states are converging toward the desired
states, while reporting the outcome of each run“

● Promise theory
● Partial windows support

maurice@atcomputing.nl

CFEngine

body common control
{
 bundlesequence => { "my_test" };
}
bundle agent my_test{
 files:
 any::
 "/tmp/hello-world"
 create => "true";
}

maurice@atcomputing.nl

Puppet
● CM, but also provisioning and orchestration these days
● Save CM values in database, instead of CM-files
● Generic modules, or roll your own (Puppetforge!)
● Ruby → Clojure (JVM)
● “... found that Puppet had the biggest mind share of

the four products and represented the most complete
picture for data center orchestration”

● Huge user base
● Windows

maurice@atcomputing.nl

Puppet

The enterprise edition consists of:

● Puppet 3.8.0
● Puppet Server 1.0.9
● PuppetDB 2.3.2
● Facter 2.4.3
● Razor 1.0.0
● MCollective 2.7.0
● Hiera 1.3.4
● Dashboard 2.1.6

maurice@atcomputing.nl

● Recipes
● Imperative !
● Cookbooks
● Ruby
● Agents
● Apache license
● Windows

maurice@atcomputing.nl

● “New” kid on the block
● Focus op orchestration
● Python!
● Agentless
● “Impera-clarativish”
● Low learning curve
● Has things like “playbooks”, “roles”
● Windows

maurice@atcomputing.nl

Comparison

Agent “manual”
mode

Windows RBAC Multi-
tenancy

Language Focus License

CFEngine yes local
mode

partial yes no c CM GPL

Puppet yes “yes” yes yes yes Ruby CM + Pro +
Orch

Apache

Chef yes yes yes yes yes Ruby CM Apache

Ansible no yes! yes yes no Python Orch GPL

maurice@atcomputing.nl

Trouble in paradise

● Modules, playbooks, roles, environments?
● How can we reuse designs?
● When do I need to push or pull?
● What tool scales better? Parallelization ?
● Files (old) vs. api's (future) ?
● Why are we doing this again?
● When is it worthwhile? I just wanted to deploy 1

software package!
● Will all software/computing be SaaS ?
● IoT?

maurice@atcomputing.nl

A call for Design Patterns !

“Each pattern describes a problem that occurs over
and over again in our environment, and then
describes the core of the solution to that problem, in
such a way that you can use this solution a million
times over, without ever doing it the same way
twice.”

Christopher Wolfgang Alexander

maurice@atcomputing.nl

Architecture

maurice@atcomputing.nl

maurice@atcomputing.nl

Books

1) Overcoming the Monster

2) Rags to Riches

3) The Quest

4) Voyage and Return

5) Comedy

6) Tragedy

7) Rebirth

maurice@atcomputing.nl

Medicine

maurice@atcomputing.nl

Gang of four

maurice@atcomputing.nl

Simple example of a pattern

Name :

Context :

Consider these patterns first :

Problem :

Solution :

ChocolateChipRatio

You are baking chocolate chip
cookies in small batches for
family and friends.

SugarRatio, FlourRatio, EggRatio

Determine the optimum ratio of chocolate
chips to cookie dough.

Observe that most people consider chocolate to be
the best part of the chocolate chip cookie. Also
observe that too much chocolate may prevent the
cookie from holding together, decreasing its appeal.

maurice@atcomputing.nl

Again...

“I have yet to see these patterns codified in
any meaningful way in a single work, or
perhaps, an organized volume of works”

– Brian K. Jones Sunday, August 3rd, 2008

maurice@atcomputing.nl

Policies

Principles

Services

Standards & Guidelines

Products

Management
speak

maurice@atcomputing.nl

Designs

● Multi-tier
● Micro-services
● SOA
● Distributed
● Grid

maurice@atcomputing.nl

Things we just do

● Load balancing
● Partitioning

– Vertical

– Horizontal

● Queuing & batch
● Automate provisioning,

configuration and code
deploy

● Orchestration
● Golden image

● Minimize distribution
of state

● Separation of
concerns

● Redundancy
● Separate

environments
● Monitoring
● Centralized logging

maurice@atcomputing.nl

Discussion: is it useful ?

Given the future of system administration:
– “virtual” cross-datacenter networks

Weave, SocketPlane

– API's instead of files
Etcd, Consul

– Containers
Docker

– Simple and abstract operating systems
Project Atomic, CoreOS

maurice@atcomputing.nl

Thank you

maurice@atcomputing.nl

maurice@atcomputing.nl

Acknowledgements

Nelson Resende (FG+SG fotografia de arquitectura)

Wikipedia

Jesper Söderlund

PWC

Ordina

David A. McAfee

Brian Jones

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

